

Journal of the Institute of Education Obafemi Awolowo University, Ile-Ife, Nigeria

ISSN: 3043-6400

Vol. 2, No. 1, 2025

CALL FOR PAPERS IFE JOURNAL OF INTEGRATED SCIENCE (IJIS)

NOTE TO CONTRIBUTOR

Ife Journal of Integrated Science, (IJIS) is a Bi-annual publication of Institute of Education, Obafemi Awolowo University, Ile-Ife (Integrated Science Unit). The Journal aims at improving the quality of academic and research manuscripts submitted by scholars and researchers, through peer review process, and disseminate the publications through open access to practitioners, educators, educationists, academia, researchers, curriculum planners and policy makers. The manuscripts can have different approaches which are quantitative as well as qualitative.

IJIS is an annual and peer - reviewed Journal.

Manuscript submitted to IJIS should:

- have a strong introduction that clearly states the organizing points of the study, acquaints the readers to what is ahead, and makes a direct link between theory, questions and research design
- 2. have focused literature review that clearly establishes why the topic /problem warrants discussion
- 3. be prepared according to the style prescribed by the 6th or 7th edition of publication manual of American Psychological Association.

Guidelines for Paper Submission

- * Articles should not be longer than 15 A4 sized pages using Times New Roman, font size of 12. Longer articles will attract additional publication fee.
- * Reference style should conform to the American Psychological Association format (6th or 7th Edition). This should be arranged in alphabetical order according to the surname of the author.
- * Footnotes are not allowed.
- * Manuscripts' cover should include the title of the paper, author(s) name(s), institution affiliation, contact and E-mail address (es).
- * Abstract should not be more than 250 words.
- * Articles can be submitted electronically via e-mail to ijisn.2023@gmail.com
- * Assessment fee of N6,000 shall be paid before any paper shall be reviewed.
- * Publication fee of N35,000, is a condition for publication that a manuscript submitted to Ife Journal of Integrated Science (IJIS) has not been published and will not be simultaneously submitted or published elsewhere.

All fees must be paid into Ife Journal of Integrated Science Account.

Bank Name: Polaris Bank

Account Name: Ife Journal of Integrated Science (IJIS)

Account Number: 1140280175

* Submissions are published at the editor's exclusive discretion. Submission that does not conform to these guidelines may not be considered for publication.

EDITORIAL BOARD

Prof. P. O. Jegede Editor - in - Chief

Prof. T. O. Bello **Managing Editor**

EditorsProf. O. S. Agboola
Dr. S. O. Olajide

EDITORIAL CONSULTANTS

EDITORIAL CONSCI	
Prof. A. Akinlua	- Dept of Chemistry, Obafemi Awolowo University, Ile-Ife.
	n - Dept of Chemistry, Obafemi Awolowo University, Ile – Ife.
1 1	- Dept. of Botany, Obafemi Awolowo University, Ile – Ife
Prof. J. G. Adewale	- Institute of Education, University of Ibadan, Ibadan
Prof. M. A. Eleruja	- Dept. of Physics, Obafemi Awolowo University, Ile -Ife.
Prof. M. A. Adeleke	- Dept. of Science and Technology Education,
	Obafemi Awolowo University, Ile – Ife.
Prof. O. A. Sofowora	- Dept. of Educational Technology and Library Studies,
	Obafemi Awolowo University, Ile – Ife
Prof. I. A. Olaosun	- Dept. of English, Obafemi Awolowo University, Ile – Ife
Prof. D. Okunoye	- Dept. of English, Obafemi Awolowo University, Ile – Ife.
Prof. E. T. O. Babalola	- Dept. of English, Obafemi Awolowo University, Ile – Ife.
Prof. M. A. Ajayi	- Dept. of Human Kinetics and Health Education,
	University of Ibadan, Ibadan.
Prof. J. B. Bilesanmi	- Dept. of Curriculum Studies and Instructional Technology,
	Olabisi Onabanjo University, Awoderu Ago-Iwoye
Prof. A. T. Akande	- Dept. of English, Obafemi Awolowo University, Ile – Ife
Prof. E. F. Bamidele	- Dept. of Science and Technology Education,
	Obafemi Awolowo University, Ile-Ife.
Prof. R. O. Ogunlusi	- Dept. of Chemistry, Obafemi Awolowo University, Ile-Ife
Dr. A. Tella	- Dept. of Science and Technology Education,
	University of Ibadan, Ibadan
Dr. A. S. Adelokun	- Department of Educational Management
Dr. K. A. Aderounmu	- Department of Kinesiology and Human Recreation,
	Obafemi Awolowo University, Ile-Ife.
Dr. T. A. Adebisi	- Dept. of Science & Technology Education, Faculty of
	Education, Obafemi Awolowo University, Ile-Ife.
Dr. A.A. Adetunji	- Dept. of Science and Technology Education,
•	Obafemi Awolowo University, Ile-Ife.
Dr. V. O. Animola	- Dept. of Integrated Science, Federal College of Education,
	Iwo, Osun State.
Dr. O. O. Bakare	- Institute of Education, Obafemi Awolowo University, Ile-Ife
Dr. M. O. Omiyefa	- Institute of Education, Obafemi Awolowo University, Ile-Ife
Dr. V. B. Olanipekun	- Bamidele Olumilua University of Education, Science and
•	Technology, Ikere, Ekiti State.
	

TABLE OF CONTENTS

INFLUENCE OF TEACHERS' QUALIFICATION ON SENIOR SECONDARY SCHOOL STUDENTS' ACADEMIC ACHIEVEMENT IN CHEMISTRY IN IFE-EAST LOCAL GOVERNMENT AREA OF OSUN STATE, NIGERIA	
Timilehin Christianah ADEDEJI	1-18
ASSESSMENT OF CHEMISTRY CURRICULUM IMPLEMENTATION IN SENIOR SECONDARY SCHOOLS IN IFE CENTRAL LOCAL GOVERNMENTAREA OF OSUN STATE Elijah Oluwatobi ADEWUYI	19-41
Enjan Giawatton XDE W C 11	17 11
LOCUS OF CONTROL AND SELF-EFFICACY AS PREDICTORS OF SENIOR SECONDARY SCHOOL STUDENTS' ACADEMIC ACHIEVEMENT IN CHEMISTRY IN IFE CENTRAL LOCAL GOVERNMENTAREA, OSUN STATE, NIGERIA	
Olamide Rofiat TIJANI	42-60
EFFICACYOF SELF-DIRECTED AND COLLABORATIVE CONSTRUCTIVISM INSTRUCTIONAL STRATEGIES ON JUNIOR SECONDARY SCHOOL STUDENTS' ENGAGEMENT IN BASIC SCIENCE AND TECHNOLOGYINADAMAWASTATE	
Samuel Akinola OGUNDARE, Ph.D, & Ahmed	- 4 - 4
IBRAHIM, Ph.D	61-75
EFFECTS OF JIGSAW COOPERATIVE INSTRUCTIONAL STRATEGY ON SECONDARY SCHOOL STUDENTS' ACQUISITION AND RETENTION OF MATHEMATICS PROCESS SKILLS	
Lucy ERAIKHUEMEN, Peter Akpojehih Agbarogi &	-
Festus Osadebamwen Idehen	76-93

76-93

EFFECTIVENESS OF FLIPPED AND BLENDED CLASSROOM LEARNING APPROACHES ON STUDENTS' ACHIEVEMENT IN GENETICS CONCEPTS IN BIOLOGY Blessing Izehiuwa EDOKPOLOR, C. N. OMOIFO, Ph.D & L. ERAIKHUEMEN, Ph.D	
EFFECTS OF FLIPPED AND BLENDED CLASSROOM LEARNING APPROACHES ON STUDENTS' RETENTION IN GENETICS CONCEPTS IN BIOLOGY IN EGOR LOCAL GOVERNMENT AREA OF EDO STATE L. ERAIKHUEMEN, Ph.D, C. N. OMOIFO, Ph.D & Blessing Izehiuwa EDOKPOLOR	
SUSTAINABLE STEM EDUCATION IN THE IOT ERA: BALANCING THE PARADOX OF APPLICATIONS, BENEFITS, AND CHALLENGES FOR BETTER PROSPECT Ezekiel Adedayo ADEOLA	1
TEACHERS' TEACHING METHOD PREFERENCES AND RESOURCES UTILISATION AS PREDICTORS OF SENIOR SECONDARY SCHOOL STUDENTS' ACADEMIC ACHIEVEMENT IN CHEMISTRY IN OSUN STATE, NIGERIA Damilola Monsurat ELUYERA & Omowunmi Sola	-
AGBOOLA, Ph.D	158-188
ENVIRONMENTAL LITERACY AMONG OSUN STATE CLASSROOM TEACHERS Omowunmi Sola AGBOOLA, Ph.D, Simeon Olayinka OLAJIDE, Ph.D, Olusegun Ojo BAKARE, Ph.D & Muraina Olugbenga OMIYEFA, Ph.D	
EFFECTS OF BI-MODALSCHOOLYARD PEDAGOGY AND GENDER ON SCIENCE PROCESS SKILLS OF PRESCHOOLERS IN OYO STATE, NIGERIA	
Florence Taiwo. OGUNYEMI, Ph.D. & Fatimah ZAKARIYYAH	208-226

STUDY HABIT AS PREDICTOR OF JUNIOR SECONDARY SCHOOL STUDENTS' INTEREST IN BASIC SCIENCE IN IFE CENTRAL LOCAL GOVERNMENTAREA, OSUN STATE Oluwaseun Newton AJEWOLE

227-234

ROLE OF SCHOOL FARMS IN DEVELOPING ENTREPRENEURIAL SKILLS AMONG SECONDARY SCHOOL STUDENTS IN IFE CENTRAL LOCAL GOVERNMENT AREA, OSUN STATE, NIGERIA

Oluyemisi Dolapo ADISA & Ibironke Ibiwumi IDOWU

235-248

TEACHERS' SELF- EFFICACY AND JUNIOR SECONDARY SCHOOL STUDENTS' LEARNING OUTCOMES IN BASIC SCIENCE IN SOUTHWESTERN NIGERIA

Abosede Adenike OYAGBILE, Ph.D. & Theodora Olufunke BELLO, Ph.D.

249-262

ROLE OF SCHOOL FARMS IN DEVELOPING ENTREPRENEURIAL SKILLS AMONG SECONDARY SCHOOL STUDENTS IN IFE CENTRAL LOCAL GOVERNMENT AREA, OSUN STATE, NIGERIA

Oluyemisi Dolapo Adisa Ibironke Ibiwumi Idowu

Institute of Education, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria E-mail: ymc4reallove@gmail.com

Abstract

The study identified activities that indicate functional school farms and determined the specific entrepreneurial skills developed through farm activities, aiming to enhance students' entrepreneurial skills through agricultural education. The study adopted a descriptive research design. The population comprised all secondary school students in Ife Central Area, with 200 purposively selected secondary school students. Data collection was conducted using a structured questionnaire, School Farm and Entrepreneurial Skill Development (SFED) and analyzed through frequency counts, mean, standard deviations and simple percentages. The results revealed that students actively participated in crop production, significantly improving their competence in agricultural practices. However, engagement in livestock farming, marketing of farm products and agroprocessing, which are critical entrepreneurial skills, was limited. Schools primarily focused on crop cultivation, with minimal attention to selling produce or marketing activities within or outside the school environment. The study concluded that while school farms enhanced students' agricultural knowledge and entrepreneurial capabilities, there was significant room for improvement in livestock production, agro-processing and financial management. These findings highlighted the potential of school farms as effective tools for teaching entrepreneurial skills,

with the capacity to reduce youth unemployment and promote self-reliance in the agricultural sector.

Key words: School Farms, Entrepreneurial Skills

Introduction

In today's educational landscape, where theoretical knowledge often struggles to find practical application, school farms are emerging as transformative spaces that redefine learning. These vibrant agricultural laboratories allow students to seamlessly transition from classroom theories to hands-on experiences, equipping them with the skills necessary to navigate real-world challenges. As highlighted by Mukembo *et al.* (2020), school farms not only serve as essential educational tools but also play a pivotal role in nurturing entrepreneurial competencies among students.

Originating in the 19th century, the concept of school farms has evolved globally, now standing at the forefront of agricultural education, particularly in Nigeria. Here, agriculture is a cornerstone of the economy, and integrating agricultural science into the curriculum reflects a commitment to fostering self-reliance and enhancing food security (Onyekuru & Eboh, 2021). Through engaging in practical activities such as crop production, aquaculture, and livestock management, students are not just learning about agriculture; they are cultivating essential business skills, preparing them for a future where they can thrive independently (Smith *et al.*, 2022).

The recent National Policy on Education underscores this commitment by designating agricultural science as a prevocational subject, aiming to develop competencies that enhance Nigeria's agricultural productivity (Adeyemo & Odebunmi, 2021). Participation in school farm activities empowers students with vital skills in resource management, financial planning, and problem-solving-capabilities crucial for success in the agricultural sector (Amesi, 2015). According to Anyadike *et al.* (2012), these entrepreneurial skills not only enable students to

create new business opportunities but also contribute significantly to economic development.

However, despite the progressive emphasis on entrepreneurship education, there exists a gap in research focusing on how school farms can specifically enhance entrepreneurial skills among Nigerian students. This study seeks to:

- i. identify the activities that indicate a functional school farm within selected secondary schools in Ife Central Local Government Area, Osun State, Nigeria; and
- ii. determine the specific entrepreneurial skills developed by students through participation in school farm activities in the study area.

The following research questions were generated to address the objectives

- i. How can the activities within selected secondary schools in Ife Central Local Government Area, Osun State, Nigeria, be identified to demonstrate a functional school farm?
- ii. What specific entrepreneurial skills are being developed by the selected secondary schools through school farm activities?

Methodology

This study adopted the survey research design. The population of the study comprised all Agricultural Science students in both public and private secondary schools within Ife Central Local Government Area, Osun State. The sample for the study consisted of 200 senior secondary school students in Ife Central Local Government Area, Osun State. A multi-stage sampling procedure was used to select the sample for the study. One senatorial district was selected in the state using simple random sampling technique. In the selected senatorial district, one Local Government Area (LGA) was selected using simple random sampling technique. In the LGA, ten secondary schools were selected using simple random sampling technique. In each school,

twenty students were selected using simple random sampling technique totaling 200 respondents that constituted the sample for the study. A structured questionnaire, titled School Farm and Entrepreneurial Skill Development (SFED), was employed for data collection. It consisted of four sections: Section A gathered demographic information from secondary students; Section B assessed the presence of functional school farms using a 3-point scale (Never, Sometimes, Often); Section C evaluated entrepreneurial skills developed through school farm activities on a 4-point Likert scale (Strongly Agree, Agree, Disagree, Strongly Disagree), with scores of 4, 3, 2, and 1 assigned to positive statements and reversed for negative ones. The SFED has a reliability value of 0.74. Data collected were analysed using frequency count, percentage, mean and standard deviation statistical tools.

Results

The demographic analysis of 200 secondary school students in Table 1 revealed that most students were in senior secondary school, with females (56.5%) slightly outnumbering males (43.5%). The majority (93%) were day students, evenly distributed between public and private institutions.

Table 1: Distribution of demographic characteristics of respondents

Variable	Frequency(f)	Percentage (%)
Class		
JSS 2	22	11.0
JSS 3	31	15.5
SSS 1	39	19.5
SSS 2	52	26.0
SSS 3	56	28.0
Gender		
Male	87	43.5
Female	113	56.5

Variable	Frequency(f)	Percentage (%)
Category of student		
Boarding	14	7.0
Day	186	93.0
Type of school		
Public school	100	50.0
Private school	100	50.0

Source: Field survey, 2024 Note: JSS = Junior Secondary School, SSS – Senior Secondary School.

Research Question 1: What activities indicate that a school has a functional school farm?

Table 2: Responses to items on School Farm Engagement

						0 0	
S/N	Items	Often (%)	Sometimes (%)	Never (%)	Mean (X)	Standard Deviation (SD)	Remark
1	Does your school engage in functional school farming	82 (41%)	107(53.5%)	11(5.5%)	1.35	0.58	Accepted
2	Does the school farm practice cash crop production	· · · ·	62(31.0)	117(58.5)	1.25	0.44	Accepted
3	Does the school farm cultivate food crop production	95(47.5%)	94(47%)	11(5.5%)	1.42	0.60	Rejected
4	Does the school farm sell the produce within the school		82(41%)	66(33%)	0.93	0.77	Rejected
5	Does the school sell the farm produce to the surrounding community or market)	75(37.5%)	110(55%)	0.52	0.63	Rejected

S/N	Items	Often (%)	Sometimes (%)	Never (%)	Mean (X)	Standard Deviation (SD)	Remark
7	Does the school farm engage in agro processing (cassava, yam, et		85(42.5%)	79(39.5%)	0.79	0.73	Rejected
		Gross A	Weighted M rithmetic Me			Rejected	

Note: Mean and standard deviation are calculated from the respective responses.

Accepted and rejected remarks indicate the overall assessment of each item

Table 2 provides presents the functionality of school farms within selected secondary schools in Ife Central Local Government Area. The results indicate varying levels of engagement in different agricultural activities. A significant majority of respondents (53.5%) reported occasional involvement in school farm activities, reflecting a moderate level of engagement. The mean scores for specific activities show that food crop production is commonly practiced (mean score of 1.42), while cash crop cultivation (mean score of 1.25) and animal/livestock production (mean score of 0.70) are less frequently engaged in. Additionally, the very low mean score of 0.52 for selling produce to the community indicates minimal interaction with real-world markets.

Research Question 2: What specific entrepreneurial skills are being developed by the selected secondary schools through the school farm activities?

Table 3: Students Responses on the Development of Entrepreneurial Skills School Farm Activities

S/N	Items	SA	A	D	SD	No response	Mean (X)	Standard Deviation (SD)	Remark
1	All students engage in crop production (e.g vegetables, cassava, okra,etc) on the school farm	29	49	70	52	2	2.73	1.01	Accepted
2	Only students engage in livestock production (goat, sheep, poultry, rabbit) on the school farm	100	51	35	12	-	1.78	0.95	Rejected
3	Teachers actively involve students in managing the school farms	19	17	95	69	-	3.07	0.90	Accepted
4	Students use various advertisement strategies to sell the farm produce	69	78	42	7	4	1.90	0.87	Rejected
5	Teachers are in charge of the marketing of the farm produce	25	46	70	59	-	2.81	1.00	Accepted
6	Farm produce from the school farm is sold to both students and teachers	49	73	58	20	-	2.25	0.94	Rejected
7	Farm produce from the school farm are sold to local markets and the surrounding community	49	73	58	20	-	2.25	0.94	Rejected
8	Revenue from sales of farm produce are managed by only the teachers	96	68	28	8	-	1.74	0.85	Rejected

S/N	Items	SA	A	D	SD	No response	Mean (X)	Standard Deviation (SD)	Remark
9	Does the school : farm engage in animal/livestock production	54(27%)) 3	31(15	5.5%)	115(57.5%	6) 0.70	0.87	Rejected
10	Revenue from sales of farm produce are managed by both the student and teachers	38 s	35	56	69	2	2.76	1.15	Accepted
	Composite M Weighted M						21.29 2.37	8.61 0.96	Rejected

Note: SA = Strongly Agree, A = Agree, D = Disagree, SD = Strongly Disagree. Mean and standard deviation are calculated based on the responses collected. Remarks indicate the overall assessment of each item.

The results in Table 3 highlight the specific entrepreneurial skills being developed through school farm activities in selected secondary schools. Students show a strong engagement in crop production, as indicated by a mean score of 2.73. This involvement suggests that they are gaining foundational skills in agricultural practices, including planning, planting, and managing crops. Additionally, the higher mean score of 3.07 for teacher involvement in managing the school farms indicates significant guidance provided to students. This mentorship plays a critical role in helping students develop operational management skills, as they learn about the daily functions of running a farm and making informed decisions.

However, the results reveal a concerning gap in student engagement in marketing activities, with a mean score of only 1.90 for their participation in marketing strategies. This low score suggests that students are not fully involved in promoting farm products or understanding market dynamics, which limits their exposure to essential marketing skills.

Furthermore, the low mean score for student participation

in financial management reinforces the idea that students have minimal experience with budgeting, pricing, and profit analysis. This lack of engagement in financial responsibilities may hinder their overall entrepreneurial development.

Discussion

The findings in Table 2 suggest that while school farms are generally functional, their potential for fostering entrepreneurial skills remains underutilized. The moderate involvement in crop production aligns with the agricultural education goals set by the West African Examinations Council (WAEC), supporting the perspective of Smith and Brown (2022), who advocate for diverse agricultural practices in educational contexts. They highlight that exposure to various agricultural methods is crucial for a comprehensive entrepreneurial education.

The data reveal that food crop production is the most commonly practiced activity, with a mean score of 1.42. In contrast, cash crop cultivation and animal/livestock production score lower at 1.25 and 0.70, respectively. This discrepancy suggests a limited exposure to diverse agricultural practices, supporting the assertion of Ajiboye's (2013) observations regarding the underutilization of school farms. The low engagement in livestock production restricts students' opportunities to gain essential skills in this critical area. Bett (2022) emphasizes the importance of practical livestock experience for skill development, underscoring a significant gap in the current educational framework.

Furthermore, the low mean score of 0.52 for selling produce to the community indicates minimal interaction with real-world markets. This finding aligns with Wilson's (2023) assertion about the necessity of supply chain experience for students. The limited engagement in cash crop production and external sales highlights the need for broader exposure to agribusiness practices, consistent with Ajiboye's (2013) recommendations for effective sales and market integration. Additionally, the findings point to insufficient agro-processing activities, representing missed

opportunities for training students in niche markets and enhancing agricultural value addition. This concern is supported by Wilson (2023), who discuss the significance of agro-processing in maximizing value within the agricultural sector.

Overall, while school farms demonstrate functionality in certain areas, the findings indicate that enhancing entrepreneurial education through diverse agricultural experiences and improved market engagement is essential for maximizing their potential. This approach would not only enrich students' learning experiences but also better prepare them for future careers in agriculture and related fields.

The findings from Table 3 highlight that crop production skills are prominently developed, as indicated by a mean score of 2.73. This strong engagement in crop production aligns with the assertion by

Eze and Nwankwo (2021) that school farms provide a practical avenue for students to develop competence in agricultural production skills. The hands-on experience gained in managing school farm operations supports the notion that practical engagement is essential for understanding agricultural processes, thereby fostering foundational skills for future agricultural endeavors.

In terms of management and leadership skills, the high mean score of 3.07 for teacher involvement in managing school farms indicates substantial guidance for students. This supports Wilson's (2023) findings, which emphasize the role of mentorship in developing essential leadership abilities and teamwork among students. The active involvement of teachers enables students to cultivate these critical skills, aligning with the view that effective management practices learned in a school farm setting can translate to real-world applications.

The results also reveal that financial literacy and revenue management, with a mean score of 2.76 for students' involvement in managing revenue from farm sales. This exposure helps students acquire basic business skills such as budgeting and pricing. However, the low mean score of 1.74 for revenue managed solely by teachers denotes a gap in students' independent

financial responsibility. This finding corroborates Smith *et al.* (2022), who argue that increased autonomy in financial management would better prepare students for entrepreneurial ventures, highlighting a critical area needing improvement in the curriculum.

The study indicates a concerning lack of livestock production skills, evidenced by a low mean score of 1.78 for student involvement in this domain. This suggests that students are not gaining significant exposure to livestock farming, which negates the potential for developing essential skills in this critical area. This supports Bett (2022) notion, asserting that hands-on experience with various animal units is crucial for developing livestock management skills, and the current underutilization in this area limits students' entrepreneurial potential.

Moreover, the findings highlight a significant gap in marketing and sales skills, with a mean score of only 1.90 for student involvement in marketing strategies. Although some marketing responsibilities are undertaken by teachers (mean score of 2.81), students' limited participation indicates they are missing vital learning opportunities. This finding aligns with Wilson (2023), who assert that marketing skills are fundamental to entrepreneurial acumen. Their emphasis on the importance of practical marketing experience corroborates the need for greater student involvement in this essential area.

Additionally, the study reveals that students' engagement in farm management and revenue handling contributes to the development of communication, problem-solving, and critical thinking skills. This aligns with Ekamilasari *et al.* (2021), who argue that collaborative interactions during project activities promote these essential skills, which are increasingly vital in modern entrepreneurship.

Finally, the moderate involvement in managing farm activities suggests that students are learning to be innovative and adaptable. As they face real-world agricultural challenges, they enhance their ability to think critically and adjust to changing conditions. This finding supports Smith and Brown (2022), who suggest that school farms provide platforms for innovation,

preparing students to meet contemporary entrepreneurial demands.

Conclusion

Premised on the above findings, the study concluded that secondary schools in the study area demonstrated strong engagement in functional school farms and crop production, while there are missed opportunities in marketing and low involvement in livestock and agro-processing activities. Secondary school students benefit from hands-on experience that enhances their agricultural competence, alongside the development of management and leadership skills through teacher guidance.

Implication for Entrepreneurial Education

To improve the functionality of school farms, schools should diversify production by incorporating cash crops and livestock farming in addition to basic crop production. This approach would not only enhance the sustainability of school farms but also provide students with practical exposure to various agricultural methods, fostering adaptability and problem-solving skills - essential entrepreneurial attributes.

Students should engage in agro-processing activities, such as processing cassava or yams, which adds value to raw products. Such activities would provide students with hands-on experience in product development, fostering skills in innovation and business thinking as they understand the value-adding process and the potential for niche market products.

A functional school farm should involve students in marketing the produce. Schools should give students the responsibility of promoting and selling farm produce within and beyond the school community. These tasks help develop entrepreneurial skills such as customer relations, product marketing and pricing strategies, preparing students for real-world market interactions.

Schools should involve students in managing the revenue from produce sales, teaching them essential financial skills such as budgeting, profit calculation and record-keeping. Such tasks

develop financial literacy, an important entrepreneurial skill that builds confidence in managing resources and assessing business viability.

Students should take on management roles under the guidance of teachers. Allowing students to oversee certain aspects of the farm fosters leadership skills, decision-making abilities, and teamwork. This exposure helps students build managerial competencies, which are vital for entrepreneurial success.

A functional school farm should engage with the external market to help students learn supply chain management. Schools should establish connections with local markets, enabling students to sell produce to the broader community. This interaction not only enhances the farm's functionality but also provides practical insights into market demands and customer service, enhancing students' entrepreneurial competencies.

References

- Adeyemo, S. A., & Odebunmi, A. A. (2021). Influence of agricultural science curriculum on students' career choice in South-Western Nigeria. *Journal of Agricultural Education and Extension*, 28(2), 197–211.
- Ajiboye, A. Y. (2013). Fostering vocational agriculture through national agricultural transformation agenda in Nigeria secondary schools, *Nigeria Journal of Research in Education, Kontagora, NigerState.*
- Amesi, J. (2015). *Theory and practice of entrepreneurship: A guide for scholars*. Divine Stone Publications. ISBN: 978-978-086-024-0
- Anyadike, N., Emeh, I. & Ukah, F. O. (2012). Entrepreneurship development and employment generation in Nigeria: Problems and prospects. Available in http://www.universalresearchjournals.org/ujegs retrieved on 4th April 2016
- Bett, A. (2022). Influence of teacher-related factors on the use of practical methods in teaching agriculture in secondary schools in Bureti Sub-County, Kenya (Unpublished Master's thesis). Egerton University.

- Ekamilasari, E., Permanasari, A., & Pursitasari, I. D. (2021). Critical thinking skills and sustainability awareness for the implementation of education for sustainable development. *Journal of Science Education Research*, *5*(1), 5–32.
- \Eze, C. C., & Nwankwo, U. L. (2021). The role of school farms in promoting sustainable agriculture education in Nigeria. International Journal of Environmental and Agriculture Research, 7(6), 1-9
- Mukembo, S. C., Edwards, M. C., & Watters, C. E. (2020). Development of livelihood skills through school-based agri-preneurship projects integrating youth-adult partnerships: The experiences of youth partners in Uganda. *Journal of International Agricultural and Extension E d u c a t i o n*, 27 (4), 111–127https://doi.org/10.5191/jiaee.2020.274111
- Onyekuru, N. A., & Eboh, E. C. (2021). School farm and its impacts on students' academic performance in agricultural science in Enugu State, Nigeria. *Journal of Agricultural Education and Extension*, 27(1), 107–120.
- Smith, E., Jones, R., & Wilson, M. (2022). Developing an entrepreneurial mindset through school farm programs. *Journal of Agricultural Education and Extension*, 28(4), 365–380.
- Wilson, T. M. (2023). A melody of mentorship: Guiding supervisors in developing career competencies and self-efficacy of undergraduate student employees (Unpublished doctoral thesis). The University of Georgia.